OMT in Primary Care

Krista W. Kasinec, DO

Slides by David C. Mason, DO, MBA, FACOFP and adapted with his permission

University of North Texas Health Science Center

Grand Rounds

June 21, 2017

Learning Objectives:

- By the end of this lecture the attendee will be able to:
 - Recognize new opportunities to apply osteopathic concepts and treatment techniques.
 - Apply functional anatomy, biomechanics, and knowledge of the autonomic nervous system’s physiological effects to common clinical cases.
 - Employ osteopathic manipulative techniques learned in the session.
 - Discuss proper documentation of osteopathic findings, treatment, billing and coding for each case.
What is Osteopathic Medicine?

- Osteopathic medicine is a distinct form of medical practice in the United States. (AACOM)
- Osteopathic medicine provides all of the benefits of modern medicine including prescription drugs, surgery, and the use of technology to diagnose disease and evaluate injury. It also offers the added benefit of hands-on diagnosis and treatment through a system of treatment known as osteopathic manipulative medicine. Osteopathic medicine emphasizes helping each person achieve a high level of wellness by focusing on health promotion and disease prevention.

Origins of Osteopathy

- Andrew Taylor Still, MD, 1828-1917
- Frontier physician in KS and MO
- 1864: three children died from meningitis
- 1874: “...flung to the breeze the banner of osteopathy.”
- 1892: founded American School of Osteopathy in Kirksville, MO
- 2016: 33 colleges of osteopathic medicine and 102,137 practicing DOs in US
Tenets of Osteopathy

- The body is a unit; the person is a unit of body, mind, and spirit.
- The body is capable of self-regulation, self-healing, and health maintenance.
- Structure and function are reciprocally interrelated.
- Rational treatment is based upon an understanding of the basic principles of body unity, self-regulation, and the interrelationship of structure and function.

Osteopathic Diagnostic Models

- Biomechanical [Postural, Structural]
 - Musculoskeletal disorders
 - Relieve pain and improve function
 - Restore normalcy
- Neurologic
 - Sensory, motor or autonomic disorders
- Respiratory/Circulatory
 - Blood and lymph disorders
- Bioenergy
 - Disorders of energy in the body
- Psychobehavioral
 - Disorders of the psyche as related to other disorders: pain, loss of function, illness
Somatic Dysfunction

- “Impaired or altered function of related components of the somatic (body framework) system: skeletal, arthrodial and myofascial structures, and their related vascular, lymphatic, and neural elements.”
- Tissue texture changes
- Asymmetry on static exam
- Range of motion deficits
- Tenderness

Common Osteopathic Treatment Models

- Soft Tissue Model
- Lymphatic Model
- Myofascial Release Model
- Counterstrain Model
- Osteopathy in the Cranial Field Model
- Muscle Energy Model
- High Velocity Low Amplitude Model
Additional Osteopathic Treatment Models

- Ligamentous Articular Strain Model (LAS)
- Balanced Ligamentous Tension Model (BLT)
- Facilitated Positional Release Model (FPR)
- Still Techniques Model
- Progressive Inhibition of Neuromusculoskeletal Structures Model (PINS)
- Bioelectric Fascial Release Model
- Strain Vector Release Model
- Oscillatory Release Model
- Energy Model

Rational Use of Osteopathic Manipulative Treatment

Primary
- Somatic dysfunction is the primary cause of the disease and OMT is the primary treatment modality
 - Example: Low back pain related to minor musculoskeletal trauma

Adjunctive
- Somatic dysfunction is interfering with homeostatic mechanisms
 - Example: Interscapular pain due to a viscerosomatic reflex from gastritis
 - Treating thoracic cage, diaphragm, etc. for patient with pneumonia
Contraindications

- Relative:
 - Acute fractures, dislocations
 - Severe osteoporosis
 - Acute infections (osteomyelitis, cellulitis etc.)
 - Malignancies
 - Acute neurologic or vascular compromise (sensation deficits)
- Absolute:
 - Patient refusal

Musculoskeletal system and fascia
Treating the fascia

- Superficial fascia is loosely knit, fibroelastic, rich in mechanoreceptors
- Deep fascia is tough and compact; surrounds muscles, nerves, and organs; contains mechanoreceptors and proprioceptors
- Fascia is capable of changes in length (plasticity and elasticity), with associated changes of energy content (hysteresis).
- Manual myofascial release provides peripheral neuroreflexive alterations in muscle tone and neural facilitation.
- The connective tissue plastic changes (creep) are associated with release of energy.
- This may include heat, electromagnetic, and piezoelectric changes.

Viscerosomatic Reflexes:

1. A peripheral focus of irritation (inflammation associated with visceral pathology), results in activation of nociceptive/general visceral afferent neurons.
2. These primary afferent neurons return to the spinal cord and synapse in the dorsal horn with inter-neurons.
3. The ongoing afferent stimulation results in the establishment of a state of irritability (facilitation) of the inter-neurons of that spinal segment.
4. Additional afferent activity, results in a segmental response to significantly fewer stimuli. This results in tenderness when the area is palpated.
5. Such activity from inter-neurons, which synapse with ventral horn motor neurons, results in segmentally related myospasticity and palpable tissue texture change.
6. The anatomic relationship between the involved organ and the paravertebral soft tissues that makes the location of the reflex changes consistent from individual to individual allows viscerosomatic reflexes to be of diagnostic value.
Sympathetic Influence on Viscerosomatic Reflexes
The Evidence Base: Does OMT Work?

Systematic Review of 15 studies
Evaluated effect of OMT on nonspecific LBP, LBP in pregnant women, and LBP in postpartum women
Statistically significant improvement in pain scores and functional status in OMT groups
Randomized, controlled, double-blind, sham-controlled
455 patients
OMT 6 sessions over 8 weeks
Statistically significant improvement in baseline pain
Clinically significant improvement in functional disability
Larger effect in High Baseline Pain Severity group

Randomized, single-blind, sham-controlled
380 participants
OMT x7 during 3rd trimester
No increase in high-risk pregnancy
Trend toward less increase in low back pain in OMT group
Increased incidence of prolonged labor in OMT group
Efficacy of osteopathic manipulation as an adjunctive treatment for hospitalized patients with pneumonia: a randomized controlled trial

Abstract

Background: The Multicenter Osteopathic Pneumonia Study in the Elderly (MOPSE) is a registered, double-blind, randomized, controlled trial designed to assess the efficacy of osteopathic manipulative treatment (OMT) as an adjunctive treatment in elderly patients with pneumonia.

Methods: 406 subjects aged ≥ 60 years hospitalized with pneumonia at 7 community hospitals were randomized using concealed allocation to conventional care only (CCO), light touch treatment (L), or OMT groups. All subjects received conventional treatment for pneumonia. OMT and LT groups received group-specific protocols for 15 minutes, twice daily until discharge, evasion of antibiotics, respiratory failure, death, or withdrawal from the study. The primary outcomes were hospital length of stay (LOS), time to clinical stability, and a symptomatic and functional recovery score.

Results: Intention-to-treat (ITT) analysis (n = 197) found no significant differences between groups. Pre-protocol (PP) analysis (n = 118) found a significant difference between groups (P = 0.01) in LOS. Multiple comparisons indicated a reduction in median LOS (95% confidence interval) for the OMT group (LOS 3.2-4.8 days) versus the CCO group (LOS 3.9-4.8 days) and not versus the LT group (LOS 13.3-4.8 days). Secondary outcomes of duration of inotropic and respiratory support and treatment endpoints were also significantly different between groups (P = 0.05 and 0.06, respectively). Duration of inotropic and respiratory support or death or respiratory failure were lower for the OMT group versus the CCO group, but not versus the LT group.

Conclusions: ITTT analysis found no differences between groups. PP analysis found significant reductions in LOS, duration of inotropic and respiratory support or death or respiratory failure or death when OMT was compared to CCO. Given the prevalence of pneumonia, adjunctive OMT merits further study.

Osteopathic Manipulative Treatment Improves Heart Surgery Outcomes: A Randomized Controlled Trial

Vittorio Recca, MD, Bruno Bordoni, MS, Paolo Casetti, PhD, Maddalena Modica, MS, Maurizio Parratii, MD

Abstract

Background: Controlling postoperative pain after heart surgery is important to reduce the risk of postoperative complications, but pain is often underestimated because of contraindications and side effects of analgesic drugs. Recently, ostomatal manipulation treatment (OMT) was demonstrated to reduce pain in different clinical contexts, suggesting its potential utility after cardiac surgery. The aim of this open-label, controlled study is to assess whether OMT contributes to postoperative pain relief and improves postoperative outcomes.

Methods: Eighty post-surgery adult inpatients were randomly allocated one to one to receive a standardized cardiorespiratory rehabilitation program alone (control group) or combined with OMT. Pain intensity and respiratory functional capacity were quantified by the Visual Analogue Scale score and by a standardized breathing test, at the start and end of rehabilitation.

• Randomized controlled trial
• 406 patients
• Significant reduction in:
 • Length of stay
 • Duration of IV abx
 • Respiratory failure or death

• 80 post-surgery pts
• End of rehabilitation:
 • Lower VAS median score
 • Higher inspiratory volume
 • Similar analgesic drug intake
 • Shorter hospitalization (19.1 +/- 4.8 days vs. 21.7 +/- 6.3 days)
Effect of Osteopathic Manipulative Treatment on Incidence of Postoperative Ileus and Hospital Length of Stay in General Surgical Patients

Gerald A. Balleau, DO; Michael P. Beller, DO; Krishna Aekela, BA; Rashi Khatri, MS N; Regina Asam, DO; and Akella Chandrasekhar, MD

Context: Postoperative ileus is a known complication after abdominal operations, and the clinical efficacy of osteopathic manipulative treatment (OMT) in postoperative surgical patients has seldom been the subject of research.

Objectives: To determine whether there is a relationship between postoperative use of OMT and postoperative outcomes in gastrointestinal surgical patients, including time to flatus, clear liquid diet, and bowel movement and postoperative hospital length of stay (LOS).

Design: A retrospective cohort study.

Setting: A 359-bed urban community hospital with an osteopathic residency program in general surgery.

Patients: Fifty-five patients who underwent a major gastrointestinal operation, who did not die, and who had complete perioperative medical records.

Main Outcome Measures: We evaluated demographic data; American Society of Anesthesiologists physical status class; preoperative comorbid conditions; postoperative complications; postoperative time to flatus, clear liquid diet, and bowel movements; and postoperative hospital LOS, electrolyte abnormalities; and type of narcotic used.

Results: Of the 55 patients, 17 received OMT. The mean time to flatus was 3.1 vs. 4.7 days, and the mean postoperative length of stay was 6.1 vs. 11.5 days.

Effect of Osteopathic Manipulative Treatment on Middle Ear Effusion Following Acute Otitis Media in Young Children: A Pilot Study

Karen M. Steele, DO; Jane E. Carneiro, DO; Judith Huag Vuna, DO; Josephine A. Covita, DO; and Lance C. Bilpich, MD

Context: Childhood acute otitis media (AOM) is highly prevalent. Its usual sequelae of middle ear effusion (MEE) can lead to conductive hearing loss, for which surgery is commonly used.

Objectives: To evaluate the efficacy of an osteopathic manipulative treatment (OMT) protocol on MEE resolution following an episode of AOM. The authors hypothesized that OMT provided adjunctively to standard care for young children with AOM would reduce the duration of MEE following the onset of AOM.

Methods: We compared standard care only (SC) and standard care plus OMT (SC + OMT) for the duration of MEE following AOM. Patients were aged 6 months to 5 years. The SC + OMT group received OMT during 3 weekly visits. Weekly tympanometric and acoustic reflectometer (AR) readings were obtained from all patients.

Results: There were 52 patients enrolled, with 43 completing the study and 9 dropping out. No demographic differences were noted. Only ears from each patient with abnormal tympanograms at entry were included. There were 76 ears in the tympanogram analysis (38 from SC, 38 from SC + OMT) and 61 ears in the AR data analysis (31 from SC, 30 from SC + OMT).
Impact of Osteopathic Manipulative Treatment on Cost of Care for Patients With Migraine Headache: A Retrospective Review of Patient Records

Erik Scherb, DO
William Thomas Crow, DO

Context: Migraine headache is highly prevalent in the United States, resulting in large healthcare expenditures.

Objective: To determine whether the use of osteopathic manipulative treatment (OMT) at an osteopathic family practice residency clinic affected the cost of treating patients with migraine headache, compared with use of OMT at the osteopathic clinic and care at an allopathic family practice residency clinic.

Methods: A retrospective review of electronic medical records from patients treated for migraines at two residency clinics in the United States from July 1, 2002, to June 30, 2007. One of the clinics was osteopathic and offered OMT services, and the other clinic was allopathic and did not offer OMT. All costs compiled during the office visits and costs of prescribed medications were tabulated for each patient. Patients’ pain severity ratings, as reported in office visits in 2006 and 2007, were also tabulated.

Results: Electronic medical records from 631 patients, representing 1427 migraine-related office visits, were analyzed. Average cost per patient visit was approximately 50% less at the osteopathic clinic than at the allopathic clinic (p < 0.001). This observed difference was attributable to the difference in the average number of medications prescribed per visit.

Conclusion: The inclusion of OMT in a treatment regimen for patients with migraine headache may lower the cost of the treatment regimen. Further study is needed to confirm these results.

Incorporating OMT into your practice

- Retrospective review of 631 patients (1427 visits)
- Average cost per patient visit was approximately 50% less at the osteopathic clinic than at the allopathic clinic
- Entirely attributable to difference in average number of medications prescribed per visit
Current Procedural Terminology

- E&M Codes CPT Book
- OV codes
 - NP problem focused
 - Established problem focused
 - 99201
 - 99202
 - 99203
 - 99204
 - 99205
- 99211
- 99212
- 99213
- 99214
- 99215

ICD-10 codes

- M99.00 Head/Cranial somatic dysfunction
- M99.01 Cervical somatic dysfunction
- M99.02 Thoracic somatic dysfunction
- M99.03 Lumbar somatic dysfunction
- M99.04 Sacral somatic dysfunction
- M99.05 Innominate somatic dysfunction
- M99.06 Lower extremity somatic dysfunction
- M99.07 Upper extremity somatic dysfunction
- M99.08 Rib somatic dysfunction
- M99.09 Abdominal/visceral somatic dysfunction
OMT Codes and Regions

<table>
<thead>
<tr>
<th>Number of regions</th>
<th>CPT code</th>
<th>(Billed_amt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 regions treated</td>
<td>98925</td>
<td>$75</td>
</tr>
<tr>
<td>3-4 regions</td>
<td>98926</td>
<td>$101</td>
</tr>
<tr>
<td>5-6 regions</td>
<td>98927</td>
<td>$131</td>
</tr>
<tr>
<td>7-8 regions</td>
<td>98928</td>
<td>$153</td>
</tr>
<tr>
<td>9-10 regions</td>
<td>98929</td>
<td>$177</td>
</tr>
</tbody>
</table>

- **Head/Cranial**
- **Cervical**
- **Thoracic**
- **Lumbar**
- **Sacrum**
- **Innominate**
- **Upper Extremity**
- **Lower Extremity**
- **Rib cage**
- **Visceral**

Modifiers: The Key to Getting Paid

- -25 modifier used for separate identifiable service on same day
- Example:
 - Patient seen for Headache: muscle tension type headache and cervical somatic dysfunction
 - ICD-10 codes R51, M99.01
 - E&M 99213.25 CPT 98925
Case 1:

- 68 year old male with a history of chronic obstructive pulmonary disease presents for checkup.
- He states sputum production and dyspnea with exertion remains unchanged from last visit.
- PMH: COPD, hypertension
- Medications: lisinopril, fluticasone/salmeterol, albuterol
- Social: EtOH 1 drink daily, 50 pack/year smoking history, quit 10 years ago

Physical Exam

- 124/74 HR 88 RR 22 T 98.6 F Pulse ox 94%
- HEENT: normal TM, pharynx clear, trachea midline, no thyromegaly.
- Cardio: Regular rhythm, 88bpm, 2/5 diastolic murmur across right sternal border.
- Pulm: distant breath sounds no rales or rhonchi, barrel chest
- Abd: normal BS soft NT no masses
- Biomech: OA ERSl, myospasm C3-5 B/L, thoracic inlet RrSl, T3-8 slit, L1ERSr, Rib1-5 inhalation dysfunction left.
- Ext: positive clubbing, poor capillary refill.
Assessment and Plan

- **Diagnoses**
 - COPD, unspecified type (J44.9)
 - Aortic valve regurgitation, acquired (I35.1)
 - Somatic dysfunctions of Cervical (M99.01), Thoracic (M99.02), Rib (M99.08), Lumbar (M99.0.3), and Abdominal/other (M99.09) regions

- **Treatment**
 - Inhaled steroids, anticholinergic
 - OA muscle energy
 - Direct myofascial release thoracic inlet
 - Direct myofascial release of diaphragm with respiratory assist

Physiology and associated somatic dysfunctions

Parasympathetic
- Increased tone = thinning of secretions and relative bronchiole constriction
- Vagus nerve: OA, AA, C2
 - Tenderpoints
 - Tissue texture changes over cervical pillars

Sympathetic
- Increased tone = thickened secretions and bronchiole dilation
- T2-7
 - Tenderpoints
 - Tissue Texture changes over transverse processes
 - Rotated vertebrae

Motor
- C3-5 (Phrenic nerve to the diaphragm)
Treatment approach

- The 2 minute treatment:
 - Head: OA release M99.00
 - Cervical: MFR M99.01
 - Thoracic: MFR M99.02

- The 5 minute treatment:
 - Thoracic: ME or HVLA M99.02
 - Rib: ME or HVLA M99.08
 - Abdomen: diaphragm doming technique M99.09

- The Extended Treatment:
 - Thoracolumbar: MFR and ME M99.02, M99.03
 - Cervical: ME, HVLA, or FPR M99.01
 - Cervical: scalene: CS, MFR, or ME M99.01
 - Cervical: sternocleidomastoid: CS, MFR, or ME M99.01
 - Upper extremity: pectoralis minor: CS, MFR, or ME M99.07
 - Thoracic: serratus anterior: CS, MFR, or ME M99.07
 - Thoracic inlet: MFR M99.92
 - Abdomen/other/Viscerosomatic: Chapman’s reflex for lung M99.09

Coding and Billing

- ICD-10
 - COPD, unspecified type (J44.9)
 - Aortic valve regurgitation, acquired (I35.1)
 - Somatic dysfunctions of Cervical (M99.01), Thoracic (M99.02), Rib (M99.08), Lumbar (M99.0.3), and Abdominal/other (M99.09) regions

- E&M
 - 99213.25

- Procedure
 - 98926 OMT to 5-6 Regions
Case 2:

- 45 year old male seen for the first time with complaint of “heart burn” especially after lying down with a full stomach.
- Associated with belching and bloating. Denies hematemesis, nausea, vomiting, diarrhea, constipation, or hematochesia. OTC cimetadine offers short lived relief.
- FamHX: neg
- Past Med Hx: hypertension
- Meds: Atenolol, NKDA
- Social: Smokes 1 ppd, drinks 4 cups of coffee daily.

Physical Exam

- 138/88 HR 68 RR 16 T 98.4
- HEENT: normal TM, pharynx clear, midline uvula and trachea, no lymphadenopathy.
- Cardio: Regular rhythm, rate 68, no murmurs
- Pulm: CTA bilaterally no W/R/R
- Abd: normal BS, soft, mild mid epigastric tenderness, no rebound or rigidity.
- Biomech: AA Rr, Chapman’s reflexes on sternum (esophagus) and anterior 5th intercostal space (Stomach), T5-7 RrSl.
Assessment and Plan

- Diagnoses
 - GERD without esophagitis (K21.9)
 - Somatic dysfunction of Cervical (M99.01), Thoracic (M99.02), and Rib (M99.08) regions.

- Treatment
 - Proton pump inhibitor
 - AA muscle energy
 - Thoracic seated muscle energy
 - Inhibitory technique for Chapman’s points

Physiology and associated somatic dysfunctions

Parasympathetics:
- Vagus nerve: OA, AA, C2
 - Tenderpoints
 - Tissue texture changes over cervical pillars
 - Rotated vertebrae
 - Compression of occipitomastoid sutures as well as occipito-atlanto joint

Sympathetics
- Increased tone = decreased acid production and peristalsis
 - T5-10
 - Tenderpoints
 - Tissue texture changes over transverse processes
 - Rotated vertebrae
 - Visceral restriction of celiac and superior mesenteric ganglion
GERD Physiology, continued

Motor
- C3-5 Phrenic nerve to the diaphragm
 - Irritation due to proximity to diaphragm
- Tenderpoints
- Tissue texture changes over cervical pillars
- Rotated vertebrae

Other Somatic Dysfunctions
- Diaphragm restriction and at all attachments
- Celiac ganglion restriction

Treatment approach

The 2 minute treatment:
- Thoracic: Seated ME M99.02

The 5 minute treatment:
- Abdomen/other: Celiac ganglion MFR M99.09
- Abd/Other/Viscerosomatic:
 - Chapman’s reflex for stomach and esophagus M99.09
 - Left 5th and 6th ICS near sternum and midline body of sternum M99.08

The Extended treatment:
- Head: Vagus: OA release M99.00
- Cervical: MFR, FPR and/or HVLA M99.01
- Thoracic: MFR and/or HVLA M99.02
- Abdomen/other:
 - Diaphragm Doming technique M99.09
 - Thoraco-lumbar junction - ME, MFR, HVLA M99.02
Coding and Billing

- **Dx:**
 - GERD without esophagitis (K21.9)
 - Somatic dysfunction of Cervical (M99.01), Thoracic (M99.02), and Rib (M99.08) regions.

- **E&M**
 - 99203.25

- **Procedure**
 - 98926 OMT to 3-4 Regions
Case 3:

- A previous patient of yours comes in for a sick visit. She is a 35 year old school teacher with 9-day history of mucopurulent nasal discharge.
- Complains of sore throat and bad taste in mouth.
- OTC sinus tablets as needed offer little relief for head and sinus pressure.

Physical Exam

- 110/64 HR 80 RR 20 T 99.8
- HEENT: TM cloudy, bulging, tenderness over maxillary and frontal sinuses, purulent nasal discharge on erythematous turbinates, pharyngeal erythema and post nasal drip, anterior cervical lymphadenopathy.
- Cardio: Regular at 80 no murmur or ectopy
- Pulm: CTA bilaterally, no W/R/R
- Biomech: OA ERrSl, OA myospasm, T1-4 myospasm right > left, Chapman’s reflex infraclavicular.
Assessment and Plan

- **Diagnoses**
 - Acute Rhinosinusitis (J01.9)
 - Somatic dysfunctions of Head (M99.00), Cervical (M99.01), and Thoracic (M99.02) regions

- **Treatment**
 - Antibiotic?
 - Nasal Steroid?
 - Sinus Drainage
 - Anterior Cervical Lymphatic Drainage
 - Direct Myofascial Release T1-4

Physiology and associated somatic dysfunctions

Parasympathetics
- Facial nerve (CN VII) via Sphenopalentine ganglion
- Vagus nerve: OA, AA, C2
 - Tenderpoints
 - Tissue texture changes over cervical pillars
 - Rotated vertebrae
- Compression of occipitomastoid sutures as well as occipito-atlanto joint

Sympathetics
- T1-4
 - Tenderpoints
 - Tissue texture changes over transverse processes
 - Rotated vertebrae
Sinusitis Physiology, continued

- Sensory/Motor: Trigeminal nerve (CN V)
 - Tenderness/fascial restriction at supraorbital and infraorbital notch and over frontal and maxillary sinuses.

- Other Somatic Dysfunctions
 - Eustachian tube dysfunction
 - Cranial dysfunction
 - Lymphatic congestion of lymph nodes: pre/post auricular, submaxillary and submental, supraclavicular, and anterior cervical chain.

Trigeminal Nerve
Trigeminal Foramina

Treatment approach

The 2 minute treatment
- Head: Supraorbital and infraorbital (CNV) massage M99.00
- Head: Frontal and maxillary effleurage M99.00

The 5 minute treatment
- Head: Periauricular drainage technique M99.00
- Cervical: Lymphatic drainage of anterior cervical lymphatics M99.01
- Abd/Other/Viscerosomatic: Chapman’s reflexes
 - Ear: Mid-maxillary line above the clavicle M99.09
 - Sinuses: Mid-maxillary line below the clavicle M99.09

The Extended treatment
- Head: OA MFR M99.00
- Head: Sphenopalatine ganglion stimulation M99.00
- Cervical: C2: MFR, FPR and/or HVLA M99.01
- Thoracic ME: MFR and/or HVLA M99.02
- Rib raising: M99.08
- Head: Muncie technique M99.00
Coding and Billing

- ICD-10
 - Acute Rhinosinusitis (J45.41)
 - Somatic dysfunctions of Head (M99.00), Cervical (M99.01), and Thoracic (M99.02) regions

- E&M
 - 99213.25

- Procedure
 - 98926 OMT to 3-4 regions
Helpful Resources

- The 5-Minute Osteopathic Manipulative Medicine Consult, by Millicent King Channell and David C. Mason
- Pocket Manual of OMT: Osteopathic Manipulative Treatment for Physicians, by Zachary Comeaux et al.
- Osteopathic Considerations in Systemic Dysfunction, by Michael Kuchera and William Kuchera

Question and Answer
References

Thank you!