Rational Combination of Cytotoxic Agents in Personalized Therapy of Malignant and non-Malignant Diseases

Borje S. Andersson, MD, Ph.D.
UT MD Anderson Cancer Center
Department of Stem Cell Transplantation
April 28, 2017

Molecular Pharmacology and Translational Drug Development Program
...limited to Stem Cell Transplantation
WHY think rationally?

(Based on Reason)
Conditioning = Immunosuppression ??

1. Conditioning

2. Patient (age, gender, CMV, comorbidities...)

3. Disease features

4. Graft

5. Supportive Care

6. GVHD prophylaxis / therapy

April 28th, 2017

B.S. Andersson
Figure 1

Cumulative incidence of graft failure by cyclophosphamide dose Number at risk

Overall survival (actuarial estimate) for the whole group (n=20) (curve A) and for the thirteen patients treated according to Bacigalupo et al.1 (curve B). SCT: stem cell transplant.
Allo-SCT in Thalassemia, Only Alternat. Donor Study till 2016

31 HAPLOIDENTICAL TRANSPLANT IN THALASSEMIA

- Survival: 93%
- Thalassemia-Free Survival: 70%
- Rejection: 23%
- Non-Rejection Mortality: 7%

2 died, 7 rejected

Sodani and Lucarelli, Ped Repts 2011;3:e13

April 28th, 2017
CONDITIONING/IMMUNOSUPPRESSION

UNDERSTANDING THE DRUGS USED FOR IMMUNOSUPPRESSIVE AND CYTOTOXIC EFFECTS
GOING BACK TO THE BASICS OF BETTER UNDERSTANDING THE FUTURE

- CYTOTOXICITY: What is That?
- IMMUNOSUPPRESSION: What is That?
Regarding Conditioning

- **CYTOTOXICITY:**
 a. Kill the malignant cells.
 b. Kill the immunocompetent cells responsible for graft rejection.

- **IMMUNOSUPPRESSION:**
 a. Get engrafted, stay engrafted.
Regarding Conditioning

- CYTOTOXICITY:
 a. Kill the malignant cells.
 b. Kill the immunocompetent cells responsible for graft rejection.

- IMMUNOSUPPRESSION:
 a. Get engrafted, stay engrafted.
IS DRUG SEQUENCING AND TIMING IMPORTANT FOR CYTOTOXICITY?

[applied to NAs and Busulfan (AA)]
Sequence and Timing of Fludarabine and Busulfan

Drug 1
0 hrs

Drug 2
8 hrs

Drug 2
24 hrs

MTT
24 hrs

MTT
24 hrs

Valdez B, and Andersson, BS. Unpubl.

April 28th, 2017

B.S. Andersson
Sequence and Timing of Fludarabine and Busulfan

Valdez B, and Andersson, BS. Unpubl.

April 28th, 2017
The Loop of Death

- DNA synthesis/repair
- DNA damage
- DNA cross-linking
- Chromatin remodeling
- DNA alkylation agents (AAs)
- Histone deacetylase inhibitors (HDACi)
- Histone modifications
- Hypomethylating agents
- Nucleoside analogues (NAs)

Apoptosis

April 28th, 2017

Valdez B, and Andersson, BS. Environ Mol Mutagen 2010;51:659-68
SEQUENCE AND TIMING ARE IMPORTANT FOR THE RESULTING CYTOTOXICITY

[applied to NAs and Busulfan (AA)]

Really, Clinically?
Flu - IV Bu Reduced-Tox Conditioning

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130 mg/m²</td>
<td>q d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flu</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>40 mg/m²</td>
<td>q d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PK d. 1 and d. 3 or 4
*day of ATG if MUD or 1-Ag mm.

BM/PBPC day 7
Survival - patients in CR at transplant

Time in months

Proportion Surviving

BuFlu

BuCy2

P=0.01

April 28th, 2017

Andersson BS et al. BBMT 2008;14:672-79
Figure 1 Cumulative incidence of relapse (A), transplant related mortality (TRM) (B), overall survival (OS) (C) and disease free survival (DFS) (D). The 5-year cumulative incidence of relapse were 16.5 ± 5.8% and 16.2 ± 5.3% in BuCy and BuFlu group (P = 0.943). The 5-year cumulative incidence of TRM were 18.8 ± 6.9% and 9.9 ± 6.3% in BuCy and BuFlu group (P = 0.104). The 5-year cumulative OS were 72.3 ± 7.9% and 81.9 ± 7.0%, respectively, in BuCy and BuFlu group (P = 0.177), and DFS were 67.4 ± 7.6% and 75.3 ± 7.2%, respectively, in BuCy and BuFlu group (P = 0.215).
BuCy2 vs Bu-Flu in AML

Figure 3: Kaplan-Meier curves of leukaemia-free survival (A) and overall survival (B)

Flu - IV Bu Reduced-Tox Conditioning

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 mg/m²</td>
<td>q d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>😊</td>
<td>😊</td>
<td>rest*</td>
<td>G**</td>
</tr>
<tr>
<td>60 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rest*</td>
<td>G**</td>
</tr>
<tr>
<td>40 mg/m²</td>
<td>q d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G** = BM/PBPC day 8
BuCy2 vs Bu-Flu in Advanced Hematological Malignancies

Figure 2. Survival differences between the busulfan-cyclophosphamide (BuCy) and busulfan-fludarabine (BuFlu) arms. (A) Overall survival; (B) relapse-free survival; (C) nonrelapse mortality; (D) event-free survival. HCT, hematopoietic cell transplantation.

JCO, Lee et al. JCO 2013;31:701-09
SEQUENCE AND TIMING ARE CRUCIALLY IMPORTANT FOR THE RESULTING CYTOTOXICITY

[applied to NAs and Busulfan (AA)]
IS DRUG DOSE IMPORTANT FOR CYTOTOXICITY?

BTW: Dose?

Dose Administered, or the resulting Systemic Drug Exposure?
Pharmacokinetic Targeting of a Therapeutic Window

Risk of Leukemia Progression and Graft Failure

Systemic Drug Exposure

Fraction, Patients at Risk

Fraction, events

PK-Guided

Fixed-Dose

Safe Limit, Syst. Exposure

Normal Organ Toxicity

"EXCESSIVE TOXICITY"

April 28th, 2017

B.S. Andersson
Fludarabine-Busulfan
Randomized study of busulfan dosing

AML/MDS

- PK-Adjusted dose AUC 6000 µMol-min
- Fixed dose 130 mg/m², resulting in an average AUC ~5000 µMol-min

The PK-adjusted Dose group will have an average dose escalation of ~20% and a consistent AUC at that level.

Andersson BS et al BMT. 2017;52:580-87
OS and PFS is Better after PK-guided Bu dosing in AML/MDS

Figure 1a. Overall Survival – All Patients
(Fixed Dose N=107, number of deaths=65;
PK-Guided Dose N=111, number of deaths=50)

Figure 1b. Progression-Free Survival – All Patients
(Fixed Dose N=107, number of events=67;
PK-Guided Dose N=111, number of events=55)

Andersson BS et al BMT. 2017;52:580-87

April 28th, 2017

B.S. Andersson
Progression-Free Survival, Non-CR Patients

Andersson BS et al BMT. 2017;52:580-87

April 28th, 2017

B.S. Andersson
Posterior Probability = 0.922 that PK-Guided is Superior to Fixed Dose IV Busulfan

Andersson BS et al BMT. 2017;52:580-587
Optimized (Conditioning)-Therapy Improves outcome!!

1. Conditioning

2. Patient (age, gender, CMV, comorbidities...)

3. Disease features

4. Graft

5. Supportive Care

6. GVHD prophylaxis / therapy

April 28th, 2017

B.S. Andersson
Regarding Conditioning-Immunosuppression

- IMMUNOSUPPRESSION: Get engrafted, stay engrafted.

- CYTOTOXICITY:
 a. Kill the malignant cells.
 b. Kill the immunocompetent cells responsible for graft rejection.

(What is “kill the – cells” ?)
Categories:

1. Slow apoptosis/induced senescence
e.g. busulfan, nucleoside analogs

2. Radiomimetic; mixture of slow / rapid apoptosis
e.g. Thiotepa, melphalan, cyclophosphamide

3. Interphase cell death/necrosis; XRT

e.g. ATG, Campath.
Optimizing the Conditioning Therapy

Hypothesis: The Conditioning Therapy delivers immunosuppression that can be considered to consist of 3 parts:

1. Killing host mature cytotoxic T-cells,
 \[+++ - +/- \]

2. Removing T-cells, other Immunoreactive cells
 \[+++ - +/- \]
 (Cf. necrosis/mitotic catastrophe/rapid apoptosis/ATG).

3. Killing host (Immunoreactive) stem cells
 \[+++++\]

Enigma: In many Genetic Diseases the Immune System is active or hyperactive, no previous chemotherapy history.

April 28th, 2017
B.S. Andersson
Now,

Let’s consider Genetic Disorders
After all, they are among the most difficult to treat:

1. Children
2. Not cancer
3. Kill (Often) slowly, difficult Benefit-Risk calculation
“Immuno-ablative Therapeutic Intervals”

- Thalassemia-SCA Patients - Immunocompetent
- Leukemia Patients - Immunosuppressed
- SCID

- Systemic Drug Exposure
- "Safe Upper Limit", Syst. Exposure
- aGVHD
- Normal Organ Toxicity

Fraction of Non-Engrafted Patients vs. Systemic Drug Exposure
“Immuno-ablative Therapeutic Intervals”

Hemoglobinopathies/ e.g. Thalassemia, SCA Immunocomp. Pats.

Systemic Drug Exposure

Fraction of Patients

2;BuCy2 1;BuCy4

"Safe Upper Limit", Syst. Exposure

aGVHD

Normal Organ Toxicity

April 28th, 2017

B.S. Andersson
“Immuno-ablative Therapeutic Intervals”

Fraction of Non-Engrafted Patients

- Hemoglobinopathies/ e.g. Thalassemia, SCA
- Immunocompetent Pat.

Systemic Drug Exposure

- “Safe Upper Limit”, Syst. Exposure
- aGVHD
- Normal Organ Toxicity

April 28th, 2017

B.S. Andersson
Fact: You cannot, must not, shall not use chemotherapy to weaken the Immune System in patients/children who do not have a malignant disease.

BUT,

We need to safely, effectively weaken the Immune system and augment immunosuppression to assure stable engraftment and achieve long-term disease control.

Therefore, we introduced:

Pre-conditioning with PharmacoTherapeutic ImmunoSuppression (PTIS).

April 28th, 2017

B.S. Andersson
“Immuno-ablative Therapeutic Intervals”

- Hemoglobinopathies/ e.g. Thalassemia, SCA
 - Immunocompetent Pat.

- Thalassemia After PTIS.

- "Safe Upper Limit", Syst. Exposure

- aGVHD

- Normal Organ Toxicity

Proportion of Non-Engrafted Patients vs. Systemic Drug Exposure

April 28th, 2017

B.S. Andersson
Hemoglobinopathy / Genetic Disease

Thalassemia (Pre-) Transplant Platform

Thalassemia, Haplo-identical SCT

Thalassemia
(Pre-) Transplant Platform

Pharmacologic PreTransplant ImmunoSuppression (PTIS) Conditioning phase

FLU x 5 DXM x 5 FLU x 5 DXM x 5
Day -68 -66 -64 -40 -38 -36 -21 -14 -12 -10

ATG x 3

FLU x 6
BU x 4

Graft
REST

CY +3 +4

Anurathapan U, BMT 2016;51:803-18
Figure 2. EFS and OS of 31 thalassemia patients undergoing haploidentical hemopoietic stem cell transplantation (haplo-SCT)
Outcomes Haplo-Tx vs others

- Haplo
- Related
- Unrelated
“Immuno-ablative Therapeutic Intervals”

- Hemoglobinopathies/ e.g. Thalassemia, SCA
- Immunocompetent Pat.
- Thalassemia After PTIS.
- “Safe Upper Limit”, Syst. Exposure
- aGVHD
- Normal Organ Toxicity

Systemic Drug Exposure

Fraction of Non-Engrafted Patients

April 28th, 2017

B.S. Andersson
“Immuno- ablative Therapeutic Intervals”

- Hemoglobinopathies/ e.g. Thalassemia, SCA
- Immunocompetent Pat.

- Thalassemia After-PTIS.

- aGVHD

- “Safe Upper Limit”, Syst. Exposure

- Normal Organ Toxicity

Fraction of Non-Engrafted Patients vs. Systemic Drug Exposure
“Immuno-ablative Therapeutic Intervals”

Fraction of Non-Engrafted Patients

Hemoglobinopathies/ e.g. Thalassemia, SCA Immunocompetent Pat.

Thalassemia After PTIX

"Safe Upper Limit”, Syst. Exposure

aGVHD

Normal Organ Toxicity

Systemic Drug Exposure

April 28th, 2017

B.S. Andersson
But, This is NOT a Thalassemia-Specific Haplo-identical SCT Program

- It is a Proof-of-Concept for making allogeneic stem cell transplantation a viable treatment for patients who have a genetically debilitating disease and where an active, or hyperactive, immune system complicates an otherwise curative therapy.
Conclusions
Conditioning = Immunosuppression ??

1. Conditioning

2. Patient (age, gender, CMV, comorbidities...)

3. Disease features

4. Graft

5. Supportive Care

6. GVHD prophylaxis / therapy

April 28th, 2017

B.S. Andersson
A. N.A.-IV Busulfan-based Conditioning

1. Requires Attention to Details, including Timing and Sequencing of the Drugs.
2. Attention Deficit Attenuates Treatment Results.
3. PK-guidance Optimizes treatment Outcome.
B. Personalized, Optimized Therapy Improves outcome!

3 Patient (age, gender, CMV, comorbidities...)

1 Disease Features Mal vs Non-Mal

2 Graft; level of matching

4 GVHD prophylaxis / therapy: CNI-vs Post-Cy based

5 Supportive Care

6 Conditioning N.A./Bu vs other

April 28th, 2017

B.S. Andersson
Collaborators

UT MD Anderson Cancer Center

Clinical:
- R Champlin
- M Qazilbash
- EJ Shpall
- C Hosing
- RB Jones
- L Worth
- Y Nieto
- Dean Lee
- S Parmar

Laboratory:
- B Valdez
- G Wang
- Y Liu
- Y Li

Biostatistics:
- PF Thall

Ramathibodi Hospital, Bangkok, Thailand:
- Suradej Hongeng

Institut Paoli Calmette, Marseille, France:
- Didier Blaise

Hopital S:t Antoine, Paris, France:
- Mohamad Mohty

U Alberta, Calgary, AB, CA:
- James Russell

Cross Cancer Center, Edmonton, AB, CA
- David Murray

Karolinska Institute, Stockholm, Sweden:
- Moustapha Hassan
Questions, Please?

April 28th, 2017

B.S. Andersson
Back-Up Slides
Figure 5a. Overall Survival – Matched Pairs of Patients (Fixed Dose N=34, number of deaths=15; PK-Guided Dose N=68, number of deaths=29), Kaplan-Meier Estimates with 95% confidence bands

Figure 5b. Progression-Free Survival – Matched Pairs of Patients (Fixed Dose N=34, number of deaths=15; PK-Guided Dose N=68, number of deaths=29), Kaplan-Meier Estimates with 95% confidence bands
“Immuno-ablative Therapeutic Intervals”

- Fraction of Non-Engrafted Patients
- Thalassemia-SCA-Pats.-Immunocompetent
- Leukemia Pats.-Immunosuppressed
- SCID

Systemic Drug Exposure

- “Safe Upper Limit”, Syst.Exposure
- aGVHD
- Normal Organ Toxicity

April 28th, 2017

B.S. Andersson